Chapter 6

GPU programming with NumbaPro

NumbaPro is a Python compiler that provides a CUDA-based API to write CUDA programs.
It is designed for array-oriented computing tasks, much like the widely used NumPy library.
The data parallelism in array-oriented computing tasks is a natural fit for accelerators such
as GPUs. NumbaPro understands NumPy array types and uses them to generate efficient
compiled code for execution on GPUs or multicore CPUs.

The compiler works by allowing you to specify type signatures for Python functions, which
enable compilation at runtime (called the JIT compilation).

The most important decorators are:

» numbapro.jit: This allows a developer to write CUDA-like functions. When
encountered, the compiler translates the code under the decorator into the pseudo
assembly PTX language to be executed in the GPU.

» numbapro.autojit: This annotates a function for a deferred compilation
procedure. This means that each function with this signature is compiled exactly
once.

» numbapro.vectorize: This creates a so-called ufunc object (the Numpy universal
function) that takes a function and executes it parallelly in vector arguments.

» guvectorize: This creates a so-called gufunc object (the NumPy generalized
universal function). A gufunc object may operate on entire subarrays (refer to
http://docs.continuum.io/numbapro/generalizedufuncs.html for more
references.)

All these decorators have a compiler directive called a target that selects the code generation
target. The NumbaPro compiler supports the parallel and GPU targets. The parallel target is
available to vectorize the operations, while the GPU directive offloads the computation to a
NVIDIA CUDA GPU.

Getting ready

NumbaPro is part of Anaconda Accelerate, which is a commercially licensed product
(NumbaPro is also available under a free license for academic users) from Continuum
Analytics. It is built on top of the BSD-licensed, open source Numba project, which itself relies
heavily on the capabilities of the LLVM compiler. The GPU backend of NumbaPro utilizes the
LLVM-based NVIDIA Compiler SDK.

229

GPU Programming with Python

To get started with NumbaPro, the first step is to download and install the Anaconda Python
distribution (http://continuum. io/downloads), which is a completely free, enterprise-
ready Python distribution for large-scale data processing, predictive analytics, and scientific
computing. It includes many popular packages (Numpy, Scipy, Matplotlib, iPython, and so on)
and conda, which is a powerful package manager.

Once you have Anaconda installed, you must type the following instructions from Anaconda's
Command Prompt:

> conda update conda

> conda install accelerate

> conda install numbapro

NumbaPro does not ship the CUDA driver. It is the user's responsibility to ensure that their
systems are using the latest drivers. After the installation, it's possible to perform the detection
of the CUDA library and GPU, so let's open Python from the Anaconda console and type:

import numbapro
numbapro.check cuda ()

The output of these two lines of code should be as follows (we used a 64-bit Anaconda distro):

C:\Users\Giancarlo\Anaconda>python

Python 2.7.10 |Anaconda 2.3.0 (64-bit)| (default, May 28 2015, 16:44:52)
[MSC v.1500 64 bit (AMD64)] on win32

Type "help", "copyright", "credits" or "license" for more information.
Anaconda is brought to you by Continuum Analytics.

Please check out: http://continuum.io/thanks and https://binstar.org
>>> import numbapro

Vendor: Continuum Analytics, Inc.

Package: mkl

Message: trial mode expires in 30 days

Vendor: Continuum Analytics, Inc.

Package: mkl

Message: trial mode expires in 30 days

Vendor: Continuum Analytics, Inc.

Package: numbapro

Message: trial mode expires in 30 days

>>> numbapro.check cuda()

230

Finding

Finding

Finding

Finding

Finding

Found 1
id 0

Summary:

PASSED
True

>>>

Chapter 6

cublas

located at C:\Users\Giancarlo\Anaconda\DLLs\cublas64 60.dl1l
trying to open library... ok

cusparse

located at C:\Users\Giancarlo\Anaconda\DLLs\cusparse64 60.d11l
trying to open library... ok

cufft

located at C:\Users\Giancarlo\Anaconda\DLLs\cufft64 60.d1l1l
trying to open library... ok

curand

located at C:\Users\Giancarlo\Anaconda\DLLs\curand64 60.dl1l
trying to open library... ok

nvvm

located at C:\Users\Giancarlo\Anaconda\DLLs\nvvm64 20 0.dll

trying to open library... ok

finding libdevice for compute 20... ok
finding libdevice for compute 30... ok
finding libdevice for compute 35... ok

CUDA devices
GeForce 840M [SUPPORTED]
compute capability:

pci device id:

o o u

pci bus id:

1/1 devices are supported

231

GPU Programming with Python

How to do it...

In this example, we give a demonstration of the NumbaPro compiler using the annotation
@guvectorize. In the following task, we try to execute a matrix multiplication using the
Numbapro module:

from numbapro import guvectorize
import numpy as np

@guvectorize(['void(int64[:,:], inté64[:,:], inte64[:,:])'],
'(m,n), (n,p)->(m,p) ")
def matmul (A, B, C):
m, n = A.shape
n, p
for i in range(m) :

B.shape

for j in range(p) :
cli, jl =0
for k in range(n) :
cli, jl += A[i, k] * B[k, jl

dim = 10
A = np.random.randint (dim, size=(dim, dim))
B = np.random.randint (dim, size=(dim, dim))

C = matmul (A, B)

print ("INPUT MATRIX A")

print (":\n%s" % A)

print ("INPUT MATRIX B")

print (":\n%s" % B)

print ("RESULT MATRIX C = A*B")

)

print (":\n%s" % C)
After running the code (using the Anaconda console), we should have an output like this:

INPUT MATRIX A

[17

78585195 9]
[35546 7653 1]
[7168 7 903 3 3]
[7 44378121 2]
[4 77 13556 7 6]
[50158444 4 9]

232

Chapter 6

[1 32073723 4]
[02 9075974 7]
[73 7 6564227]
[2 19710357 3]]
INPUT MATRIX B

[[2 98423973 1]
[91 338076 3 5]
[74 96 65976 6]
[6 83 15447 7 5]
[6 25128605 8]
[4 45760113 8]
[2 78619841 6]
[2 29836147 4]
[9 96 933324 9]
[8 46 78886 7 81]
RESULT MATRIX C = A*B

[[368 284 402 331 304 295 361 291 327 378]
[231 207 278 226 188 199 236 177 193 273]
[248 247 280 217 208 190 243 198 232 279]
[201 181 232 175 173 149 218 156 170 225]
[297 239 331 301 239 225 290 225 229 315]
[235 229 270 222 181 248 246 175 219 280]
[174 142 201 166 124 185 192 108 129 217]
[267 213 348 297 212 292 289 194 233 334]
[266 254 305 239 228 230 303 234 232 288]
[227 219 255 215 166 189 214 196 204 229]]

The @guvectorize annotation works on array arguments. This decorator takes an extra
argument to specify the gufunc signature. The arguments are explained, as follows:

4

The first three arguments specify the types of data to be managed, which are the
array of integers: 'void (int64([:,:]1, int64([:,:]1, inté64[:,:])"

The last argument of @guvectorize specifies how to manipulate the matrix
dimensions: ' (m,n), (n,p)->(m,p) "’

@guvectorize (['void(int64[:,:], inté64[:,:], inte4[:,:])'],
'(m,n), (n,p)->(m,p)")

233

GPU Programming with Python

In the subsequent code, we define the matmul (A, B, C) operation. It accepts the two input
matrix A and B and produces a C output matrix. According to the gufunc signature, we should
have:

A(m,n)* B(n,p) = C(m,p) where m,n,p are the matrix dimensions.
The matrix product is simply performed via three for loops along with the matrix indices:

for i in range (m) :
for j in range(p) :
Ccli, j1 =0
for k in range(n):
Cl[i, jl += A[i, k] * B[k, 7jl

The Numpy's function randint is used to build integers from random matrices:

dim = 10
A = np.random.randint (dim, size=(dim, dim))
B = np.random.randint (dim, size=(dim, dim))

Finally, the matmul function is called with these matrices with arguments, and the resultant
matrix is printed out:

C = matmul (A, B)
print ("RESULT MATRIX C = A*B")

)

print (":\n%s" % C)

Using GPU-accelerated libraries with

NumbaPro

NumbaPro provides a Python wrap for CUDA libraries for numerical computing. Each code
using these libraries will get a significant speedup without writing any GPU-specific code. The
libraries are explained as follows:

» cuBLAS: This is a library developed by NVIDIA that provides the main functions of
linear algebra to run on a GPU. Like the Basic Linear Algebra Subprograms (BLAS)
library that implements the functions of linear algebra on the CPU, the cuBLAS library
classifies its functions into three levels:

o Level 1: Vector operations
o Level 2: Transactions between a matrix and vector

o Level 3: Operations between matrices

Chapter 6

The division of these functions in the three levels is based on the number of nested
loops that are needed to perform the selected operation. More precisely, the
operations of the level are essential cycles that are geared to complete the execution
of the selected function.

» cuFFT: This provides a simple interface to calculate the Fast Fourier Transform (FFT)
in a distributed manner on an NVIDIA GPU, enabling you to exploit the parallelism of
the GPU without having to develop your own implementation of the FFT.

» cuRAND: This library provides the creation of quasirandom numbers. A quasirandom
number is a random number generated by a deterministic algorithm.

» cuSPArse: This provides a set of functions for the management of sparse matrices.
Unlike the previous case, its functions are classified into four levels:

o Level 1: These are operations between a vector that is stored in a shed and
a vector that is stored in a dense format.

o Level 2: These are the transactions between a matrix format stored in a shed
and a vector stored in the dense format.

o Level 3: These are the operations in a matrix format that are stored in a
shed and set of vectors that are stored in a dense format (this set can be
considered as one large dense matrix.)

o Conversion: These are operations that allow the conversion between
different storage formats.

How to do it...

In this example, we present an implementation of GEneral Matrix Multiply (GEMM), which is
a routine to perform matrix-matrix multiplication on NVIDIA GPUs. The sequential version using
the NumPy Python module and the parallel version using the cuBLAS library will be reported.
Also, a comparison of the execution time will be made between the two algorithms.

The code for this is as follows:

import numbapro.cudalib.cublas as cublas
import numpy as np
from timeit import default timer as timer

dim = 10

def gemm() :
print ("Version 2".center (80, '='))

A
B

np.random.rand (dim, dim)

np.random.rand (dim, dim)

235

GPU Programming with Python

D = np.zeros_like(A, order='F')

print ("MATRIX A :")
print A
print ("VECTOR B :")
print B

NumPy

start = timer ()

E = np.dot (A, B)

numpy time = timer() - start

)

print ("Numpy took %f seconds" % numpy time)

cuBLAS
blas = cublas.Blas()

start = timer ()

blas.gemm('T', 'T', dim, dim, dim, 1.0, A, B, 1.0, D)
cuda_time = timer() - start

print ("RESULT MATRIX EVALUATED WITH CUBLAS")

print D

print ("CUBLAS took %f seconds" % cuda time)
diff = np.abs(D - E)
print ("Maximum error %f" % np.max(diff))

def main() :
gemm ()
if name == ' main ':
main ()

The output obtained for this will be as follows:

MATRIX A :
[[0.79582178 0.95671563 0.69251157 0.85600979 0.32826726 0.72861569
0.20724061 0.55065641 0.2257875 0.90146437]
[0.6742022 0.43449657 0.04862685 0.9023226 0.87598306 0.20774405
0.15774015 0.2847742 0.81601615 0.34114773]
[0.61500219 0.65982283 0.73493152 0.21913261 0.80862566 0.73982082
0.84005388 0.38745489 0.676947 0.31530397]

236

O O O O O O o o o o o o o

.60694411
.9064746

.60166404
.2912572

.32192297
.88491826
.21512101
.0586854

.77378663
.25423268
.77808301
.63316824
.97122802
.53542786

VECTOR B

[[

O O O O O O 0O O o o 0o o O o o o o o o

.17084153
.00681474
.81913609
.75033104
.10071768
.23255164
.84163163
.02367708
.90406949
.16257016
.62989968
.16352136
.44608094
.18330497
.37860881
.72063491
.42135462
.71826696
.08020851
.0407631

O O O O O O O o o o o o o o

O O O O O O O O O o O O O 0o o o o o o o

.65138528
.93419845
.41423776
.81481984
.30244072
.98290063
.64731098
.48812094
.43994483
.06869655
.47386303
.58479485
.53723365
.83478941

.44546677
.01126972
.97583768
.41878918
.3090773

.96166165
.59296382
.65485736
.03424157
.81357471
.47944669
.42323191
.19969488
.76095336
.33079438
.42698316
.89413827
.9748898

.47789158
.41811299

O O O O O O o o o o o o o o

O O O O O O O O O 0o o O O 0o o o o o o o

.63773284
.14609622
.09938464
.65222424
.865952009
.62965353
.4079146

.3625991

.5620805

.13642323
.54323866
.45141828
.68688748
.27459888

.21551063
.13769525
.52579565
.96892428
.94185921
.65615938
.12281989
.79834789
.01519989
.58567631
.86860435
.46907905
.01035155
.12880003
.19275564
.53811423
.00620849
.9086774

.45538401
.2539022

O O O O O O o o o o o o o o

O O O O O O O O O 0o O O O 0o o o o o o o

.06589098 0.
.28317855]
.19315303 0.
.0670377 1
.37701833 0.
.38323725]
.8371392 0.
.58142603]
.70350504 O.
.00221422]
.42010733 0.
.46231481]
.54315409 oO.
.2102463911]

.39731923 0.
.63437229]
.20179695 0.
.54358419]
.70550442 0.
.16991118]
.32851275 0.
.76747705]
.5011444 0.
.24503327]
.94086568 0.
.977720971
.69528549 0.
.24301603]
.58316669 0.
.83682958]
.63770542 0.
.7084634 1]
.26468263 0.
.7334670611

49177294

07374789

79095644

01398673

60589009

80652762

00883411

00102686

24066758

10651627

78716318

63175281

24312278

07219375

35753971

29376823

84960276

Chapter 6

.02029247

.45335697

.11518194

.85945652

.09605428

.05903843

.9855186

.81069924

.18154282

.62659408

.02568872

.17705116

.13450463

.91454669

.63697732

.68415057

.1108932

237

GPU Programming with Python

Numpy took 1.167435 seconds

RESULT MATRIX EVALUATED WITH

[[2.
1.

,,
N BN O R B NMKENDMKREKREREREBDNDERDNDIERDND

1.

93393517
71083261

.70759988
.37381915
.93301949
.8600905

.05665894
.68187918
.68553937
.54050405
.55782414
.92525406
.27705425
.39131705
.94662205
.79113948
.42686338
.51847658
.44854528

65043895

3.
.20145366
.42236864
.80760808
.70921232
.70096673
.92477247
.6942483

.98030198
.8876191

.2600454

.76932667
.53777179
.43879465
.62822264
.08449619
.22641127
.05078902
.69315101
2.

N W NN KHE DD WD BHE R DR WDDDDDNDW

22653293

79595207

CUBLAS took 0.004226 seconds

Maximum error 0.000000

CUBLAS

2.58999843
3.4654546
0.94108333
2.87826551
2.08465713
3.21368161
1.42646422
2.30742661
1.05436088
2.04514196
1.
3
1
2
1
2
1
2
2
2

57942935

.03618471
.98218876
.75148098
.12425671
.05742732
.3762425

.68199133
.3255071

.82714486

W W D N RE WD DD WDNDDNDDNDDND W WDNDDNDwWwDND

.97688025
.9246803 1
.20715685
.88739456]
.39447429
.20257798]
.45288009
.35163885]
.03107385
.49719893]
.11991574
.87628333]
.30511984
.14994564]
.72230283
.82536594]
.57727754
.72340269]
.17886105
.5848929611]

2.

2.

1.

40723642

06739391

.76684939

.27576149

.98066787

.91570669

.85547257

.21131853

.80747335

47260987

The result obtained confirms the effectiveness of the cuBLAS library.

In order to make a comparison between a NumPy and cuBLAS implementation of a matrix
product, we import all the required libraries:

import numbapro.cudalib.cublas as cublas

import numpy as np

Also, we define the matrix dimension:

dim = 10

238

.22561846

.78390442

.84034554

.65682509

.94328559

.93236718

.36423334

.56748417

.53040609

.69597578

Chapter 6

The core algorithm is the gemm () function. First, we define the input matrices:

A = np.random.rand (dim,dim)
B = np.random.rand(dim,dim)

Here, D will contain the output of the cuBLAS implementation:
D = np.zeros_like(A, order='F')

In this example, we compare the calculation done with NumPy and cuBLAS. The NumPy
evaluationis: E = np.dot (A, B), where the matrix E will contain the dot product.

Finally, the cuBLAS implementation is as follows:

blas = cublas.Blas/()
start = timer ()
blas.gemm('T', 'T', dim, dim, dim, 1.0, A, B, 1.0, D)
cuda_time = timer() - start

The gemm () function is a cuBLAS level 3 function:

numbapro.cudalib.cublas.Blas.gemm(transa, transb, m, n, k, alpha,
A, B,beta, Q)

It realizes a matrix-matrix multiplication in the following form:
C = alpha * op(A) * op(B) + beta * C where op is transpose or not.

At the end of the function, we compare the two results and report the execution time (cuda_
time):

print ("CUBLAS took %f seconds" % cuda_ time)

diff = np.abs(D - E)
print ("Maximum error %$f" % np.max(diff))

In this example, we saw an application of the cuBLAS library. For more complete references,
referto http://docs.nvidia.com/cuda/cublas/index.html and http://docs.
continuum. io/numbapro/cudalib for a complete list of CUDA function libraries wrapped
with NumbaPro.

239

